

EMC Test Equipment Catalog

- Electrostatic Discharge Simulator
- Impulse Noise Simulator
- Fast Transient / Burst Simulator
- Lightning Surge Simulator
- Voltage Dip & Swell Simulator
- Damped Oscillatory Wave Simulator
- Emission Measurement System
- Broadband Sleeve Antenna
- TEM Horn Antenna
- EMC Test Systems for Automotive Electronics

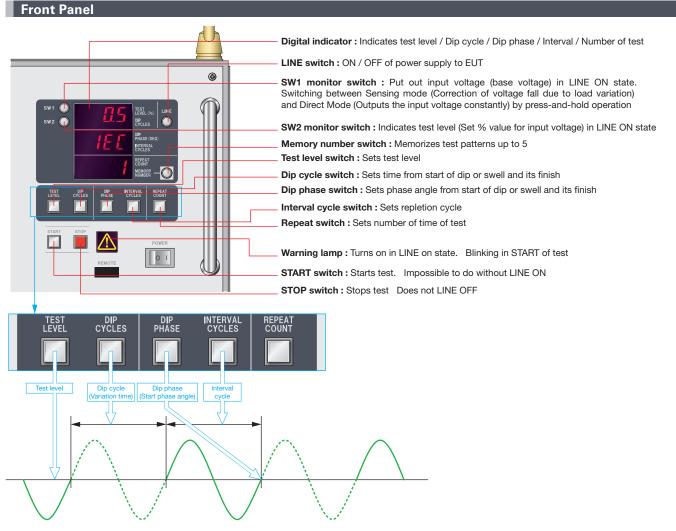
|2|0|2|0|-|2|0|2|1|

www.noiseken.com

Voltage Dip & Swell Simulator

Feature

- Voltage dip & swell simulator conforming to EN/IEC61000-4-11 Ed.3 (2020) Standard
- Multiple types AC plug receptacle on the front panel for easy connection of the EUT
- Easy setting for the test parameters on the front panel
- Realize flexible test conditions setting beyond the Standard with a PC remote control
- Enable to conduct the interruption test in DC (DC 125 V / 16 A max)



Parameter				Specification	Note	
Input voltage range				$AC 90 \sim 240 V \pm 10\%$		
				50/60 Hz \pm 10%		
				DC 0 \sim 125 V		
Output voltage range				AC 0 \sim Input voltage + 20%	AC 290 V Max	
				DC 0 or Input voltage		
Output current capability	AC	100% of input volta	ge	16 A rms	Continuous	
		80% of input voltag	e 20 A rms	for a duration of < 5s		
		70% of input voltag	e 23 A rms	for a duration of < 5s		
		40% of input voltage 40 A rms		for a duration of < 5s		
	DC			16 A	Continuous	
Peak inrush current drive ca	apability	AC 100 \sim 120 V		250 A peak (< 10ms)	A peak (< 10ms)	
		AC 220 ~ 240 V		500 A peak (< 10ms)		
Load regulation		100% of input volta	ge	<5%		
		at 0 \sim 16 A rms				
		80% of input voltag	e < 5%			
		at 0 \sim 20 A rms				
		70% of input voltage < 5%				
		at 0 \sim 23 A rms				
		40% of input voltag	e < 5%			
		at 0 \sim 40 A rms				
Over shoot / Under shoot				<5%	At 100 Ω load	
Rise and fall time				$1\sim5\mu{ m s}$	At 100 Ω load	
Dip / Swell level		Percent setting		$0 \sim 120\%$		
		Voltage setting		$0\sim 290$ V	5 V step	
Number of repetition Number setting		Number setting		1 \sim 1000 times or unlimited repetition	1 time step	
nterval cycle		Cycle setting	Synchronous	$0.5 \sim 5000$ cycles	0.5 cycle step	
		Time setting	Synchronous	$1 \mathrm{s} \sim 100 \mathrm{s}$	1s step	
			Asynchronous	10ms \sim 10h	0.1ms step	
Dip cycle		Cycle setting	Synchronous	0.01 \sim 5000 cycyles	0.01 cycle step	
		Time setting	Synchronous	$0.1 { m ms} \sim 100 { m s}$	0.1ms step	
			Asynchronous	$0.1 { m ms} \sim 10 { m h}$	1s step at setting > 100:	
Dip phase		Phse angle setting	Synchronous	$0 \sim 360^{\circ}$	1° step	
		Time setting	Synchronous /	$0\sim$ 19.9 ms (50Hz)	0.1ms step	
			Asynchronous	$0\sim$ 16.6 ms (60Hz)		
/oltage variation test		Time setting	Synchronous	$0.3 \sim 10$ s for time for increasing voltage		
Memory capacity			5 tests			
Input voltage from EUT			AC100 \sim 115V / AC200 \sim 240 V \pm 10% $$ 50/60 Hz \pm 5%			
Interface				Optical interface (RS232C or USB)		
Operating temperature rang	le		15 ∼ 35℃			
Operating humidity range			25 \sim 75%RH (without dew)			
Dimensions				(W) 430 x (H)650 x (D) 600 mm		
Weight			Approx. 130 kg			

The above specifications are based on the use of the optional Windows remote control software

Accessory	
Item	Q'ty
Power cable	1 pc.
Instruction manual	1 volume

VDS-2000

Option

Software (VDS-2002-PC) MODEL: 14-00036A

Enables to set the test parameters along users' preference or determination in addition to the Standard. The set available parameters are dip & swell cycle, repetition cycle, interval cycle, etc. as well as IEC test levels. Very efficient tools for the operation.

NAK-LIN WID FORD	5-10 (# 10 (O (D)	>>10 MU2 ▶ 0 # 0 0 0 0. >>>>>>>>>>>>>>>>>>>>>>>>>>	2-10 HOLD DE 10 4 10 40 40 2-10 FR/01
80.00 80-61000-4-11000			
ACTERN ACTERNOLM	() ()<	Name Table Table <tht< td=""><td></td></tht<>	
ACREATLR ACREATLRAMA >>.	10 TH		$\begin{array}{c c} \frac{\partial \Omega(0)}{\partial t} & \frac{\partial \Omega(0)}{\partial t} & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} \\ & \frac{\partial \Omega(0)}{\partial t} & \partial \Omega(0$
10世紀8年 DC電正式新社5時 >>>	100% [me.3*]	(100%) (1	
007			8752 2007 277 DB

Optical USB Module MODEL: 07-00022A

Optical RS232 Module MODEL: 07-00017A

Connection adaptor used for PC remote control of the simulator. USB optical conversion, equipped with 5m optical fiber cable

Connection adaptor used for PC remote control of the simulator. RS232C optical conversion, equipped with 5m optical fiber cable

IEC61000-4-11 Ed.3 Test Standard

1. General

Immunity test standard for electrical / electronic equipment which are connected to low voltage power supplies networks whether they are malfunctioned or resistible against voltage dips, short interruptions or voltage variations.

Power capacity of equipments under the test (EUT) shall be 16A per phase. This standard applies to equipment connected to 50/60 Hz AC supply network and does not apply to equipment operating on 400Hz AC.

2. Test Level

- $\cdot A$ basis for the voltage test level use the rated voltage for the equipment (U__).
- if the voltage range does not exceed 20 % of the lower voltage specified for the rated voltage range, a single voltage within that range may be specified as a basis for the test level specification (U_r) .

1. Voltage dips and short interruption

Table ⁻	I – Preferred test le	evel and durations	for voltage dips
--------------------	-----------------------	--------------------	------------------

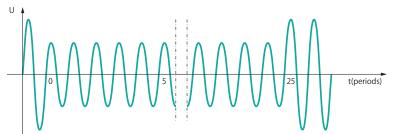
Calss ^a	test level and durations for voltage dips (ts) (50 Hz / 60 Hz)				
Class 1	Case-by-case according to the equipments requirements				
Class 2	0% during 1 / 2 cycle	0% during 1 cycle	70% during 25 / 30 ^c cycle	s	
Class 3	0% during 1 / 2 cycle	0% during 1 cycle	40% during 10 / 12 ^c cycle	70% during 25 / 30 ^c cycle	80% during 250 / 300 ^c cycle
Class X ^b	Special	Special	Special	Special	Special

a. Classes as per IEC 61000-2-4 ; see Annex B

b. Class × can be any level determined by consent between the EUT manufacturer and the simulator supplier

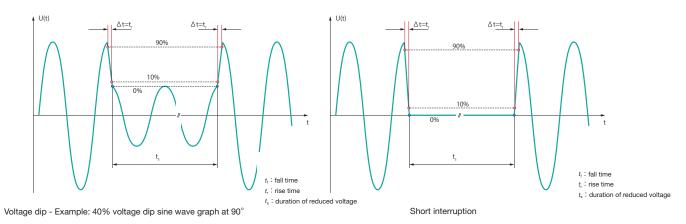
c. "25 / 30 cycle" means "25 cycles for 50 Hz test" and "30 cycles for 60 Hz test"

* Each dip% shall be voltages against the rated voltages

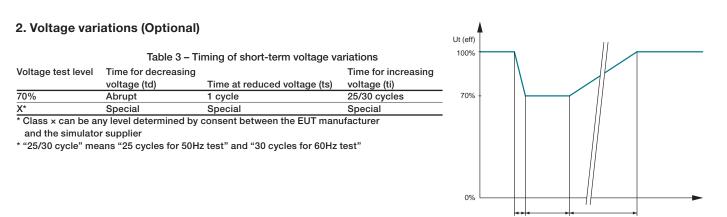

Table 2 – Preferred test level and durations for short in	interruptions
---	---------------

Calss	Test level and durations for short interruptions (ts) (50 Hz / 60 Hz)	
Class 1	Case-by-case according to the equipments requirements	
Class 2	0% during 250 / 300* cycle	
Class 3	0% during 250 / 300* cycle	
Class X	Special	
a Classes as ner IEC61000-2-4 · see Anney B		

a. Classes as per IEC61000-2-4 ; see Annex B

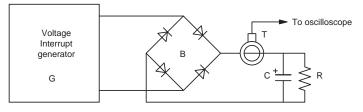

b. Class x can be any level determined by consent between the EUT manufacturer and the simulator supplier

c. "250/300 cycle" means "250 cycles for 50 Hz test" and "300 cycles for 60Hz test"



NOTE The voltage decreases to 70% for 25 periods. Step at zero crossing

Voltage dip - Example: 70% voltage dip sine wave graph at 0°


IEC61000-4-11 Ed.3 Test Standard

td : Time for decreasing voltage ts : time at reduced voltage ti : time for increasing voltage

e generator
As required in Table 1, $\pm 5\%$ of residual voltage value
Less than 5 of U_{τ}
Less than 5 of U_{T}
Less than 5 of U_{τ}
Less than 5 of U_{T}
16A r.m.s per phase at rated voltage. The generator shall be capable of carrying 20A at 80% of rated value for a duration of 5s. It shall be capable for carrying 23A at 70% of raged voltage and 40A at 40% rated voltage for a duration of 3s. (This requirement may be reduced according to the EUT rated steady-state supply current. See Clause A. 3).
Not be limited by the generator. However, the maximum peak capability of the generator need not exceed 1000 A for 250 V to 600 V mains, 500 A for 200 V to 240 V mains, or 250 A for 100 V to 120 V mains.
Less than 5% of U_{τ}
Between 1µs and 5µs
0° to 360°
Less than ± 10°
± 10°

EUT Peak Inrush Current requirement

Components

- G $\,$ voltage interrupt generator, switched on at 90° and 270°
- T current probe, with monitoring output to oscilloscope
- B rectifler bridge
- R bleeder resistor, not over 10000 Ω or less than 100 Ω
- C 1700 μ F ± 20% electrolytic capacitor

Circuit for determining the inrush current drive capability of the short interruptions generator

In order to be able to use a low-inrush drive current capability generator to test a particular EUT, that EUT's measured inrush current shall be less than 70% of the measured inrush current drive capability of the generator.

IEC61000-4-11 Ed.3 Test Standard

4. Test Setup

The test shall be performed with the EUT connected to the test generator with the shortest power supply cable as specified by the EUT manufacturer. If no cable length is specified, it shall be the shortest possible length suitable to the application of theEUT.

5. Test Procedure

Climatic and Electromagnetic Conditions

Ambient temperature	15° C $\sim 35^{\circ}$ C
Relative humidity	$25\% \sim 75\%$
Atmosopherical pressure	86 kPa \sim 106 kPa (860 hPa (mbr) \sim 1060 hPa (mbr))
Electromagnetic environment	Level which does not affect the test result

Execution of the test

- The EUT shall be tested for each selected combination of test level and duration with a sequence of three dips / interruptions with intervals of 10s minimum (between each test event).
- · Each representative mode of operation shall be tested.
- For voltage dips, changes in supply voltage shall occur at zero crossings of the voltage, and at additional angles considered critical by product committees or individual product specifications preferably selected from 45°, 90°, 135°, 180°, 225°, 270° and 315° on each phase. For short interruptions, the angle shall be defined by the product committee as the worst case. In the absence of definition, it is recommended to use 0° for one of the phases.
- For voltage variations (Optional), the EUT is tested to each of the specified voltage variations, three times at 10s interval for the most representative modes of operations.

6. Evaluation of Test Results and Test Report

The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance level defined by its manufacturer or the requestor of the test, or agreed between the manufacturer and the purchaser of the product. The recommended classification is as follows.

- 1) Normal performance within limits specified by the manufacturer, requestor or purchaser;
- 2) Temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention;
- 3) Temporary loss of function or degradation of performance, the correction of which requires operator intervention;

4) Loss of function or degradation of performance which is not recoverable, owing to damage to hardware or software, or loss of data.

Generally speaking, as far as the EUT can be immune to the surges which is injected in the all specified period and it satisfy the functional requirements according to the product specification, the test result can be judged as "Good". The test report shall contain the test conditions and the result.

Notes: This test set-up is quoted from IEC61000-4-11 Ed.3.0 (2020) Standard. Please go through the Standard if the more details are required.